2-Amino-4-benzyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridines: Novel Selective β_3 -Adrenoceptor Agonists

Weiping Zheng,[†] Victor I. Nikulin,[†] Anish A. Konkar,^{‡,§} Sandeep S. Vansal,[§] Gamal Shams,[‡] Dennis R. Feller,[‡] and Duane D. Miller^{*,†}

Department of Pharmaceutical Sciences, University of Tennessee, Memphis, Tennessee 38163, Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, and Department of Pharmacology and National Center for the Development of Natural Products, School of Pharmacy, University of Mississippi, University, Mississippi 38677

Received January 11, 1999

Trimetoquinol (TMQ, **7**) is a potent nonselective β -adrenoceptor (AR) agonist. Replacement of the catechol moiety of TMQ with a 2-aminothiazole group resulted in novel thiazolopyridine derivatives **9**–**11** which have been synthesized and evaluated for biological activity on human β_1 -, β_2 -, and β_3 -AR. The Bischler–Napieralski reaction has been employed as a novel approach to construct the 2-amino-4,5,6,7-tetrahydrothiazolo[5,4-*c*]pyridine ring system. Although in radioligand binding studies analogues **9** and **10** did not show selectivity toward β_3 -AR, they exhibited a high degree of selective β_3 -AR agonist activity in functional assays. Moreover, the β_3 -AR agonist activity of the 2-aminothiazole derivatives is abolished by N-acetylation (analogue **11**) or ring opening (analogue **25**). This illustrates the importance of the intact 2-amino-4,5,6,7-tetrahydrothiazolo[5,4-*c*]pyridine ring for β_3 -AR activity.

Introduction

Following the classification of β -adrenergic receptors (AR) into β_1 - and β_2 -subtypes in 1967,¹ a third member of this family was pharmacologically identified in 1984² and was designated as the β_3 -AR. The subsequent cloning and characterization of β_3 -AR from genomic libraries of several species including human,³ mouse,⁴ and rat⁵ provided conclusive evidence for its existence. Human β_3 -AR and its mRNA have been found in the GI tract (e.g., small intestine, gall bladder) and adipose tissue (e.g., omental, retroperitoneal, mammary subcutaneous, abdominal subcutaneous fat).^{6–10}

The β_3 -AR has been shown to mediate various pharmacological and physiological effects such as lipolysis, thermogenesis, and intestinal smooth muscle relaxation in rodents.¹¹ It has also been thought to play an important role in glucose homeostasis and energy balance in humans.¹² Additional evidence for this role was provided by the discovery of a Trp64Arg mutation in the human β_3 -AR that is associated with the early onset of non-insulin-dependent diabetes mellitus (NIDDM) in Pima Indians,¹³ a greater dynamic capacity to gain weight in French obese patients,¹⁴ and an increased tendency to develop NIDDM in Finnish obese patients.¹⁵ Therefore, a number of laboratories^{12,16} have pursued selective β_3 -AR agonists that have the potential for treating obesity, NIDDM, and intestinal hypermotility disorders. These agonists shall also be able to help further define the physiological roles played by the β_3 -AR. The current β_3 -AR agonists belong to two general structural classes (Chart 1): i.e., phenethanolamines, e.g., BRL compounds (1-4) and CL 316243 (5), and aryloxypropanolamines, e.g., CGP-12177 (6). Despite these reported endeavors, none of the compounds in-

Chart 1

vestigated have been reported to produce good therapeutic effects in humans due to a lack of selectivity or potency.¹⁷ Hence, efforts are underway in our and other laboratories to synthesize novel, potent, selective β_3 -AR agonists.

Trimetoquinol (TMQ, **7**; Chart 2) is a known potent, nonselective β -AR agonist, used clinically in Japan as a bronchorelaxant.^{18–21} Our laboratory has focused on TMQ structural modifications in order to obtain selective β -AR agonists. Our previous structural modifications of TMQ have generated potent, selective β_2 -AR agonists.²² In this study, we report novel structural modifications of TMQ, with the goal of synthesizing potent and selective β_3 -AR agonists. It has been discovered that the catechol moiety of TMQ is indispensable for the agonist activities at both human β_1 - and β_2 -AR,²³ whereas its degree of contribution to TMQ's β_3 -AR

[†] University of Tennessee.

[‡] The Ohio State University.

[§] University of Mississippi.

Chart 2

activity has not been evaluated. On the basis of the observation that many previously claimed β_3 -AR agonists lack a catechol moiety, we hypothesized that the catechol of TMQ is not necessary for the observed activity at β_3 -AR, and selective β_3 -AR agonists will thus be achieved by modifying this catechol group. Compound 9 (Chart 2) has been designed by replacing catechol with 2-aminothiazole. It is also expected that this replacement will lead to chemically and enzymatically more stable compounds, because the stability problems associated with the catechol have been circumvented. Indeed, 2-aminothiazole has been employed to replace the catechol or phenolic group to afford orally active dopamine autoreceptor agonists.²⁴ We have previously found that substitution of the 3'- and 5'-methoxy groups of TMQ with iodine atoms (i.e., 8, Chart 2) is welltolerated at β_1 - and β_2 -AR.²⁵ Furthermore, compound **8** exhibits greater binding affinities at all three β -AR subtypes (especially at β_3 -AR) than TMQ (Table 1); a similar modification was thus applied to analogue 9 to give analogue 10. Compounds 11 and 25 were also synthesized and their activities evaluated at the three

Chart 3

 a (a) Methyl vinyl ketone, NaOEt, EtOH, EtOAc, rt \rightarrow reflux; (b) (i) Br₂, MeOH, 0 °C \rightarrow rt, (ii) 10.0 M H₂SO₄, rt; (c) thiourea, acetone, rt; (d) 30% HBr, reflux.

 β -AR subtypes to determine the effects of N-acetylation or ring opening, respectively, on biological activities. Analogue **12** was designed to determine the effect of switching positions of S and N of the thiazole ring in analogue **9**. However, several attempts to prepare **12** were unsuccessful.

Chemistry

The preparation of 2-amino-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridines has been well-documented in the literature.²⁶⁻²⁸ They are constructed by two approaches: (a) Pictet-Spengler reaction-the condensation and subsequent cyclization between an aldehyde and 2-(2'-amino-4'-thiazolyl)ethylamine derivatives; (b) Hantzsch thiazole synthesis-the condensation and subsequent cyclization between an α -bromopiperidone derivative and thiourea (Chart 3). However, it was envisioned that both of these approaches would not meet our synthetic challenge. The Pictet-Spengler reaction would necessitate the use of an inherently unstable substituted phenylacetaldehyde, whereas the required α -bromopiperidone for Hantzsch thiazole synthesis is not readily accessible synthetically. Alternatively, the Bischler–Napieralski reaction (Chart 3) is an attractive

Scheme 2^a

 a (a) Oxalyl chloride, dry benzene, 0 °C \rightarrow rt \rightarrow reflux; (b) 14, NaOH, CHCl₃, H₂O, rt; (c) POCl₃, CH₃CN, reflux; (d) NaBH₄, MeOH, 0 °C \rightarrow rt; (e) 1.0 M HCl in Et₂O.

 a (a) Acetic anhydride, dry benzene, dry CH₃CN, reflux; (b) POCl₃, CH₃CN, reflux; (c) NaBH₄, MeOH, 0 °C \rightarrow rt; (d) maleic acid, CH₃CN.

Scheme 4^a

approach for the synthesis of our designed TMQ analogues, because the required substituted phenylacetic acids are stable and readily accessible. The Bischler– Napieralski reaction is routinely used to prepare 3,4dihydroisoquinolines;²⁹ however, its application to the preparation of 2-amino-4,5,6,7-tetrahydrothiazolo[5,4*c*]pyridines via the corresponding dihydro intermediate is novel.

According to Timmerman's synthetic scheme,³⁰ compound **15**, which is the starting amine for the Bischler– Napieralski approach, has been prepared (Scheme 1). However, in our hands, the transformation from **13** to **14** did not proceed in good yield as described. Instead, the procedure described by Sprague et al.³¹ converted **13** to **14** almost quantitatively.

Scheme 2 depicts the synthesis of analogues **9** and **10**. Under the Schotten–Baumann conditions, substituted phenylacetic acid **16** or 17^{32} was allowed to react with compound **15**. The amide precursors **18** and **19** were obtained, and each was treated with POCl₃ in refluxing acetonitrile. The dihydro intermediate was reduced in situ with NaBH₄, giving final compounds **9** and **10** which were purified by crystallization or column chromatography on silica gel.

The acetamido analogue **11** was prepared according to Scheme 3. Acetylation of **19** with acetic anhydride gave precursor **20** that was then subjected to $POCl_3$ and $NaBH_4$. Compound **11** was isolated as its maleic acid salt. Attempts to make the salt of **11** with stronger acids (HCl, oxalic acid) failed because of spontaneous deacetylation.

Analogue **12** (Scheme 4) is a derivative of 2-amino-4,5,6,7-tetrahydrothiazolo[4,5-*c*]pyridine that is an unknown heterocyclic system. Amide precursor **22** has been prepared from compound **21** and 3,4,5-trimethoxyphenylacetic acid under Schotten–Baumann conditions.

Compound **21** was synthesized according to a literature scheme (Scheme 5);³⁰ however, the conversion from the α -bromoaldehyde **27** to 2-aminothiazole **28** was again achieved effectively by using the procedure of Sprague et al.³¹ Using various conditions^{29,33,34} of the

^{*a*} (a) 3,4,5-Trimethoxyphenylacetyl chloride, NaOH, CHCl₃, H₂O, rt; (b) (i) POCl₃, CH₃CN, reflux, (ii) NaBH₄, MeOH, 0 °C \rightarrow rt; (c) P₂O₅, celite, dry CHCl₃, dry benzene, reflux; (d) acetic anhydride, dry benzene, dry CH₃CN, reflux; (e) (i) BH₃·THF, THF, 0 °C \rightarrow rt \rightarrow reflux, (ii) 1.0 M HCl in Et₂O.

Scheme 5^a

^{*a*} (a) 4-Chloro-1-butanol, dry DMF, 70 °C; (b) (i) oxalyl chloride, dry CH₂Cl₂, dry DMSO, $-60 \degree C \rightarrow -50 \degree C$, (ii) Et₃N, H₂O, $-50 \degree C \rightarrow rt$; (c) Br₂, dry CCl₄, rt; (d) thiourea, acetone, rt; (e) 30% HBr, reflux.

Table 1. Binding Affinities of TMQ Analogues on Human β -AR Subtypes

		$pK_i \pm SEM^a$	
	human β_1 -AR	human β_2 -AR	human β_3 -AR
ISO	5.80 ± 0.07	6.17 ± 0.12	4.73 ± 0.25
TMQ	6.49 ± 0.06	7.36 ± 0.23	5.43 ± 0.28
8	7.10 ± 0.06	8.69 ± 0.16	7.67 ± 0.24
9	5.21 ± 0.08	6.21 ± 0.12	4.17 ± 0.05
10	6.14 ± 0.08	6.37 ± 0.08	5.83 ± 0.15

^{*a*} Human β_{1^-} , β_{2^-} , and $\beta_{3^-}AR$ were expressed in CHO cells. [¹²⁵I]ICYP was used as the radioligand. K_i values were calculated using the following equation: $K_i(M) = IC_{50}(1 + [L]/K_d)$, wherein IC_{50} is the molar concentration of an analogue at which the radioligand binding was reduced by 50%, [L] is the radioligand concentration used, and K_d is the radioligand equilibrium dissociation constant. $pK_i = -\log K_i$; SEM, standard error of mean; n = 3-9.

Bischler–Napieralski reaction, attempts to cyclize the amide precursor **22** proved to be unsuccessful. On the basis of the published mechanism³⁵ of the Bischler–Napieralski reaction, in which the cyclization step is achieved by aromatic electrophilic substitution via a nitrilium intermediate, the failed cyclizations in our studies could be due to the low negative charge density at C4 of precursors **22** and **23**, which has been predicted by semiempirical charge density calculations (W. Zheng, J. E. De Los Angeles, D. D. Miller, unpublished results). However, **22** has been reduced by BH₃ to give the openchain analogue **25** that has also been examined in all three human β -AR subtypes. Similarly, the acetamido amide precursor **23** also failed to give the cyclized product under the reaction conditions described.

Figure 1. Concentration—response curves of compound **10** on cAMP accumulations in CHO cells expressing human β_{1^-} , β_{2^-} , and β_{3^-} AR. Drug-induced changes in cellular cAMP were determined by the CRE—LUC assay (see Experimental Section). Data are the mean \pm SEM of n = 8.

Biological Results and Discussion

Chinese hamster ovary (CHO) cells expressing human β_{1^-} , β_{2^-} , or $\beta_{3^-}AR$ were used to evaluate the newly designed and synthesized TMQ analogues. Table 1 compares the binding affinities of analogues **9** and **10** at human β_{1^-} , β_{2^-} , or $\beta_{3^-}AR$ to those of the reference compounds, (R)-(-)-isoproterenol (ISO), TMQ, and **8**. Receptor activation potencies and intrinsic activities of the novel TMQ analogues, together with those for reference compounds (ISO, TMQ, **8**), at human β_{1^-} , β_{2^-} , or $\beta_{3^-}AR$ are given in Table 2. Both cAMP radioimmunoassay and cAMP response element (CRE)–luciferase

Table 2. Functional Activities of TMQ Analogues on Human β -AR Subtypes

	human β_1 -AR		human β_2 -AR		human β_3 -AR			
	$pK_{act} \pm SEM^a$	$IA \pm SEM^b$	$pK_{act} \pm SEM$	$\text{IA} \pm \text{SEM}$	$pK_{act} \pm SEM$	$\text{IA} \pm \text{SEM}$		
A. cAMP-RIA Assay ^c								
ISO	8.75 ± 0.14	100	8.40 ± 0.17	100	7.37 ± 0.11	100		
TMQ	8.70 ± 0.11	109 ± 10	8.33 ± 0.24^d	95 ± 3	8.60 ± 0.15	95 ± 3		
8	8.11 ± 0.13	103 ± 4	8.47 ± 0.12	56 ± 9	8.76 ± 0.2	120 ± 9		
9	NA^{e}	<10	NA	20 ± 1	5.06 ± 0.01	54 ± 1		
10	NA	<5	NA	<5	6.95 ± 0.11	67 ± 3		
11	NA	<10	NA	<10	NA	<10		
B. CRE-LUC Assay ^c								
10	NA	<10	NA	<15	6.71 ± 0.18	62 ± 3		
25	NA	<10	NA	<10	NA	<10		

^{*a*} Human β_1 -, β_2 -, and β_3 -AR were expressed in CHO cells. K_{act} is the molar drug concentration which produces a cAMP response equal to 50% of its maximal response, $pK_{act} = -\log K_{act}$. ^{*b*} IA, intrinsic activity, expressed as the percentage of a maximal analogue response relative to the maximal response (100%) of (*R*)-(–)-isoproterenol (ISO). ^{*c*} See Experimental Section. ^{*d*} Data for *S*-(–)-TMQ. ^{*e*} NA, not active at 100 μ M; n = 4-12.

(LUC) reporter gene (CRE-LUC) assays (see Experimental Section) were employed to determine the receptor activities of the compounds.

Replacement of the catechol of TMQ with a 2-aminothiazole group (analogue 9) resulted in a moderate decrease (14-19-fold) in receptor binding affinities for all three human β -AR subtypes (Table 1). However, while **9** is inactive (up to 100 μ M) at human β_1 - and β_2 -AR, it was observed to be a partial agonist for human β_3 -AR despite a 3467-fold decrease in potency as compared to TMQ (Table 2). These results suggest that the catechol group of TMQ is essential for its functional activity at human β_1 - and β_2 -AR, but not for its binding affinity at these two β -AR subtypes. Findings consistent with this observation were provided by previous sitedirected mutagenesis studies on human β_1 - and β_2 -AR.²³ A similar moderate decrease in affinity observed for the human β_3 -AR suggests that the catechol moiety is also not critical for binding to β_3 -AR. Perturbation of catechol interactions with all the β -AR subtypes may well have been compensated for by a strong binding interaction between the 1-trimethoxybenzyl group of TMQ and β -AR, and this provides a possible explanation for lack of loss of receptor affinity. However, our results from functional assays suggest that, unlike at β_1 - and β_2 -AR, the catechol moiety of TMQ is not indispensable for β_3 -AR activation.

The 2-aminothiazole group has been demonstrated to be a viable bioisostere for catechol/phenolic groups in developing orally active dopamine agonists.^{24,36} However, this replacement in our studies with TMQ led to dichotomous results. While a moderate decrease in receptor binding affinity was observed at all three human β -AR subtypes, the functional activity was abolished (up to 100 μ M) at both human β_1 - and β_2 -AR, but functional activity was retained at β_3 -AR, thus providing the desired selectivity for β_3 -AR.

Replacing the 3'- and 5'-methoxy group of 9 with iodine atoms (analogue 10) resulted in a significant increase (46-fold) in binding affinity at β_3 -AR, compared to minor increases (8.5- and 1.4-fold) at β_1 - and β_2 -AR, respectively (Table 1). Similar observations were noted for compound 8 which exhibited significant (174-fold) and moderate increases (4- and 21-fold) in binding affinities at β_{3} - and β_{1} -, and β_{2} -AR, respectively, as compared to TMQ (Table 1). Interestingly, while compound **10** is inactive (up to 100 μ M) at human β_1 - and β_2 -AR, it activates β_3 -AR with a 78-fold greater potency than 9, and its intrinsic activity (67%) is also greater than that of 9 (54%) (Table 2). These results indicate that the decreases in potency and intrinsic activity at human β_3 -AR following replacement of the catechol moiety of TMQ with a 2-aminothiazole group can be reversed to a certain extent by increasing the receptor binding affinity resulting from modification of the 4-trimethoxybenzyl group of analogue 9. In fact, while **9** is >3000-fold less potent than TMQ at activating β_3 -AR, **10** is only 45-fold less potent than TMQ. However, in contrast to TMQ, compound 10 displays a very high selectivity for activation of β_3 -AR. Consistent functional activities for 10 were obtained by both the cAMP radioimmunoassay and the CRE-LUC assays (Table 2, Figure 1).

We were also interested in examining the possible effects of functionalizing the 2-aminothiazole moiety of **10** on its activities at β -AR. Introduction of an acetyl group on **10** resulted in compound **11** that is inactive (up to 100 μ M) at β_{1-} and β_{2} -AR. Surprisingly, this modification of **10** completely abolishes β_{3} -AR activity (up to 100 μ M) (Table 2). This result indicates that an intact 2-aminothiazole moiety is essential for maintaining functional activity at β_{3} -AR. This phenomenon is likely due to steric perturbation at the receptor site corresponding to the 2-amino group of **10**, and hence a functionally active β_{3} -AR conformation cannot be achieved.

The open-chain compound **25** was also evaluated at human β_1 -, β_2 -, and β_3 -AR by the CRE–LUC assay (Table 2). It is functionally inactive (up to 100 μ M) at all three human β -AR subtypes. Similar biological results have been previously reported³⁷ on some other TMQ open-chain analogues.

Conclusions

In this study, we have shown that replacing the catechol moiety of TMQ with the 2-aminothiazole group completely abolished the β_1 - and β_2 -AR activities while retaining activity at β_3 -AR. Thus, highly selective β_3 -AR agonists (9, 10) have been identified. It has been demonstrated that the β_3 -AR activity of the 2-aminothiazole analogues is abolished by N-acetylation or ring opening. A parallel increase in β_3 -AR binding affinity and functional activity has also been observed in proceeding from analogue 9 to 10. This information should prove to be very useful for identifying highly selective and more potent β_3 -AR agonists that could be useful in the treatment of obesity, NIDDM, and intestinal hypermotility disorders. These agonists, including 10 identified in this study, shall also be helpful in further defining the physiological roles of β_3 -AR.

Experimental Section

Chemistry. A Thomas-Hoover capillary melting point apparatus was used to measure all melting points that are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Bruker AX 300 spectrometer (300 and 75.5 MHz, respectively), and chemical shift values (δ) are expressed as parts per million (ppm) relative to tetramethylsilane (TMS). Peaks are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; bs, broad singlet. IR spectra were recorded on a Perkin-Elmer System 2000-FTIR. Elemental analyses were performed by Atlantic Microlab, Inc. (Norcross, GA 30091), and the values found are within $\pm 0.4\%$ of the theoretical values. Silica gel (Merck, 230-400 mesh, 60 Å) was used for flash column chromatography. THF was dried by distillation from sodium benzophenone ketyl, anhydrous benzene was from Aldrich, and anhydrous ethyl ether was from Fischer. All starting materials were from Aldrich and used without further purification.

2-Amino-4-(2-phthalimidoethyl)thiazole Hydrobromide (14). To a solution of 13^{30} (2.08 g, 7.0 mmol) in acetone (45 mL) was added a solution of thiourea (0.535 g, 7.0 mmol) in acetone (25 mL) with rapid rate at room temperature. Just after the addition was complete, a precipitate appeared; the suspension was stirred overnight at room temperature and filtered to afford 2.45 g (99%) of 14 as a colorless powder: mp 258–260 °C dec (lit.³⁰ mp 195 °C dec starting point); ¹H NMR (DMSO- d_6) δ 2.82 (t, J = 6.3 Hz, 2H), 3.83 (t, J = 6.2 Hz, 2H), 6.56 (s, 1H), 7.81–7.88 (m, 4H), 9.01 (bs, 2H); IR (KBr) 3214, 3092, 1767, 1721, 1633, 1573, 1402 cm⁻¹. Anal. (C₁₃H₁₁N₃O₂S·HBr) C, H, N. *N*-2-[(2-Amino-4-thiazolyl)ethyl]-3,4,5-trimethoxyphenylacetamide (18). (a) To a suspension of 3,4,5-trimethoxyphenylacetic acid (4.52 g, 0.02 mol) in dry benzene (200 mL) was added dropwise oxalyl chloride (20 mL, 0.23 mol) at 0 °C. After the addition was complete, the reaction mixture was stirred at room temperature until a clear solution was obtained (about 1 h). The solution was then heated at reflux for 2.5 h. The reaction mixture was cooled to room temperature and evaporated to give a yellow oil. It was dissolved in benzene (~50 mL) and evaporated again (repeated for two more times); 4.9 g (100%) of the acid chloride was obtained as a viscous yellow oil after drying in vacuo: ¹H NMR (CDCl₃) δ 3.83 (s, 3H), 3.84 (s, 6H), 4.05 (s, 2H), 6.45 (s, 2H); IR (neat) 300, 2941, 2840, 1799, 1593 cm⁻¹.

(b) To a well-stirred suspension of 15³⁰ (976 mg, 3.2 mmol), NaOH (512 mg, 12.8 mmol) in CHCl₃ (7 mL), and H₂O (5 mL) was added slowly a solution of above-obtained 3,4,5-trimethoxyphenylacetyl chloride (784 mg, 3.2 mmol) in CHCl₃ (6 mL) at room temperature. After the addition was complete, the reaction mixture was stirred vigorously at room temperature for 1.5 h. The CHCl₃ layer was separated, and the H₂O layer was extracted with CHCl₃. The combined organics were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The oily residue was dissolved in CHCl₃ (40 mL), to which HCl (1.0 M solution in dry Et₂O) (10 mL) was added at 0 °C. The whole mixture was concentrated; the oily residue was dissolved in H_2O (10 mL). The aqueous solution was washed successively with EtOAc, Et_2O , and $CHCl_3$ and basified with 20% NaOH. The product was extracted with CHCl₃, the combined organics were washed with brine, dried over anhydrous Na₂SO₄, and concentrated, and the resulting solid residue was crystallized from EtOAc to afford 803 mg (71%) of 18 as a colorless crystal: mp 148-149.5 °C; ¹H NMR (CDCl₃) δ 2.57 (t, J = 6.2 Hz, 2H), 3.42 (q, J = 5.8 Hz, 2H), 3.46 (s, 2H), 3.79 (s, 3H), 3.80 (s, 6H), 5.16 (bs, 2H), 5.96 (s, 1H), 6.43 (s, 2H), 6.50 (bs, 1H); ¹³C NMR (CDCl₃) & 30.6, 38.9, 44.1, 56.1, 60.8, 103.1, 106.8, 130.5, 136.9, 150.1, 153.3, 167.9, 170.7; IR (KBr) 3433, 3266, 3080, 2939, 1646, 1624, 1590 $\rm cm^{-1}.$ Anal. (C₁₆H₂₁N₃O₄S) C, H, N.

2-Amino-4-(3,4,5-trimethoxybenzyl)-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridine Dihydrochloride (9). A mixture of 18 (70.3 mg, 0.2 mmol) and phosphorus oxychloride (0.27 mL, 2.9 mmol) in CH₃CN (4 mL) was stirred and heated at reflux for 5 h. After the reaction mixture was cooled and concentrated under reduced pressure, the residue was dissolved in MeOH (2 mL), and the solution was heated at reflux for 30 min. After evaporation, the residue was dissolved in MeOH and evaporated again (repeated three more times). To the stirred solution of the resulting residue in MeOH (10 mL) was added NaBH₄ (757 mg, 20 mmol) in portions cautiously at 0 °C. After the addition was complete, the reaction mixture was stirred overnight at room temperature. After the reaction mixture was evaporated to dryness under reduced pressure, the residue was dissolved in H_2O (5 mL), cooled with an icewater bath, and basified with 20% NaOH. The basic solution was extracted with EtOAc; the combined organics were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to give a viscous yellow oil. The oily residue was dissolved in CHCl₃ (5 mL), to which HCl (1.0 M solution in dry Et₂O) (2 mL) was added at 0 °C. The precipitate was filtered off, washed successively with Et₂O, EtOAc, and CHCl₃, and crystallized from MeOH-Et₂O to afford 36.5 mg (45%) of **9** as a pale-yellow powder: mp 230-231 °C dec; ¹H NMR (DMSO-*d*₆) δ 2.71-2.90 (m, 2H), 2.96-3.03 (m, 1H), 3.17-3.23 (m, 3H), 3.64 (s, 3H), 3.75 (s, 6H), 4.77 (bs, 1H), 6.67 (s, 2H), 8.48 (bs, 1H), 9.68 (bs, 1H), 9.85 (bs, 1H); 13 C NMR (CD₃OD) δ 21.8, 39.8, 41.0, 54.8, 56.8, 61.2, 108.3, 112.9, 130.7, 133.9, 139.2, 155.2, 171.5; IR (KBr) 3392, 2940, 2839, 2771, 1632, 1593 cm⁻¹. Anal. (C₁₆H₂₁N₃O₃S·2HCl·0.5H₂O) C, H, N.

N-2-[(2-Amino-4-thiazolyl)ethyl]-3,5-diiodo-4-methoxyphenylacetamide (19). In the same manner as 18, the title compound was prepared from 15 (590.3 mg, 1.94 mmol) and 3,5-diiodo-4-methoxyphenylacetyl chloride (844.8 mg, 1.94 mmol) which in turn was obtained by treating its corresponding acid **17**³² with oxalyl chloride as described above for 3,4,5trimethoxyphenylacetic acid. Recrystallization from EtOAc gave 642.8 mg (61%) of **19** as a colorless crystal: mp 175–176 °C; ¹H NMR (CD₃OD) δ 2.63 (t, J = 6.8 Hz, 2H), 3.35 (s, 2H), 3.41 (t, J = 6.8 Hz, 2H), 3.79 (s, 3H), 6.05 (t, J = 0.8 Hz, 1H), 7.72 (s, 2H); ¹³C NMR (CD₃OD) δ 31.9, 39.7, 41.8, 61.1, 90.9, 103.4, 137.1, 141.6, 149.9, 159.4, 171.5, 172.9; IR (KBr) 3431, 3272, 3083, 2933, 1643, 1623, 1579, 1524 cm⁻¹. Anal. (C₁₄H₁₅I₂N₃O₂S) C, H, N.

2-Amino-4-(3,5-diiodo-4-methoxybenzyl)-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridine Dihydrochloride (10). In the same manner as 9, the title compound was prepared from 19 (380.1 mg, 0.7 mmol). After flash column chromatography on silica gel, eluting with MeOH/CHCl₃ (1:30), 72 mg (20%) of the free base form of the product was obtained as a white solid, and it was treated with HCl (1.0 M solution in dry Et₂O) to afford 10 as a pale-yellow solid: mp 201–203 °C dec; ¹H NMR (DMSO- d_6) δ 2.67–2.77 (m, 2H), 3.02–3.11 (m, 2H), 3.15–3.35 (m, 2H), 3.74 (s, 3H), 4.74 (bs, 1H), 7.90 (s, 2H), 8.31 (bs, 2H), 9.59 (bs, 1H), 9.79 (bs, 1H); ¹³C NMR δ 22.5, 38.0, 41.5, 54.9, 61.2, 91.9, 112.6, 135.1, 135.5, 142.6, 160.7, 171.4; IR (KBr) 3421, 2964, 2937, 2775, 1628, 1577 cm⁻¹. Anal. (C₁₄H₁₅I₂N₃-OS·2HCl) C, H, N.

N-2-[(2-Acetamido-4-thiazolyl)ethyl]-3,5-diiodo-4-methoxyphenylacetamide (20). To a stirred suspension of 19 (434.5 mg, 0.8 mmol) in dry CH₃CN (1.8 mL) was added dropwise a solution of acetic anhydride (o.16 mL, 1.7 mmol) in dry benzene (0.6 mL). After the addition was complete, the reaction mixture was heated at reflux for 2.5 h. After the reaction mixture was cooled to room temperature and concentrated under reduced pressure to remove solvents completely, H_2O (5 mL) was added to the residue and the mixture was basified with saturated NaHCO3 aqueous solution to pH 7.5-8.0. The solid material was filtered off and crystallized from CH₃CN to afford 430 mg (92%) of 20 as a colorless crystal: mp 231–232 °C; ¹H NMR(DMSO- d_6) δ 2.10 (s, 3H), 2.69 (t, J = 7.0 Hz, 2H), 3.29-3.32 (m, 4 H), 3.71 (s, 3H), 6.70 (s, 1H), 7.67 (s, 2H), 8.08 (t, J = 5.4 Hz, 1H), 12.04 (s, 1H); ¹³C NMR $(DMSO-d_6) \delta 22.5, 31.1, 38.2, 40.1, 60.2, 90.9, 108.0, 136.7,$ 139.9, 148.3, 157.0, 157.5, 168.2, 169.3; IR (KBr) 3429, 3273, 3062, 1644, 1554, 1537 cm⁻¹. Anal. ($C_{16}H_{17}I_2N_3O_3S$) C, H, N.

2-Acetamido-4-(3,5-diiodo-4-methoxybenzyl)-4,5,6,7tetrahydrothiazolo[5,4-*c***]pyridine Maleate (11).** In the same manner as **9**, the title compound was prepared from **20** (300 mg, 0.51 mmol). After flash column chromatography on silica gel, eluting with acetone/hexane (1:3), 150 mg (52%) of the free base form of **11** was obtained as a white powder: mp 170-172 °C; ¹H NMR (DMSO-*d*₆) δ 2.09 (s, 3H), 2.53-2.60 (m, 2H), 2.66-2.73 (m, 1H), 2.77-2.86 (m, 1H), 2.89-2.95 (m, 1H), 3.09-3.15 (m, 1H), 3.72 (s, 3H), 4.12-4.13 (m, 1H), 7.80 (s, 2H), 11.91 (bs, 1H); ¹³C NMR (DMSO-*d*₆) δ 22.5, 27.0, 40.4, 40.8, 53.9, 60.2, 90.9, 124.2, 139.3, 140.4, 143.7, 155.5, 156.7, 168.0; IR (KBr) 3428, 3252, 2914, 1675, 1636, 1565. Anal. (C₁₆H₁₇N₃SO₂I₂) C, H, N.

11 was obtained as a white powder by treating the aboveobtained free base with maleic acid in CH₃CN: mp 121 °C dec; ¹H NMR (CD₃OD) δ 2.18 (s, 3H), 2.93–3.09 (m, 4H), 3.38– 3.44 (m, 1H), 3.63–3.71 (m, 1H), 4.93–4.96 (m, 1H), 6.26 (s, 8/3H), 7.85 (s, 2H); ¹³C NMR (DMSO-*d*₆) δ 22.4, 23.4, 37.7, 40.4, 53.7, 60.3, 91.6, 118.2, 134.7, 135.4, 140.7, 142.1, 157.5, 157.8, 167.1, 168.6; IR (KBr) 3436, 3049, 2968, 2946, 1700, 1686, 1624, 1571 cm⁻¹. Anal. (C₁₆H₁₇I₂N₃O₂S·⁴/₃C₄H₄O₄·¹/₃Et₂O) C, H, N.

2-Amino-5-(2-phthalimidoethyl)thiazole Hydrobromide (28). In the same manner as **14**, the title compound was prepared from thiourea (2.75 g, 36.1 mmol) and **27**³⁰ (crude, 10.69 g, 36.1 mmol). Recrystallization from MeOH/EtOH (1: 10) gave 6.19 g (46% based on aldehyde **26**³⁰) of **28** as colorless plates: mp 244–246 °C dec (lit.³⁰ mp 180 °C dec starting point); ¹H NMR (DMSO-*d*₆) δ 2.96 (t, *J* = 6.2 Hz, 2H), 3.77 (t, *J* = 6.3 Hz, 2H), 7.08 (s, 1H), 7.82–7.89 (m, 4H), 9.01 (bs, 2H); IR (KBr) 3308, 3222, 3108, 2975, 1764, 1711, 1618, 1608, 1554, 1402 cm⁻¹. Anal. (C₁₃H₁₁N₃O₂S·HBr) C, H, N. *N*-2-[(2-Amino-5-thiazolyl)ethyl]-3,4,5-trimethoxyphenylacetamide (22). In the same manner as **18**, the title compound was prepared from **21**³⁰ (1.95 g, 6.4 mmol) and 3,4,5-trimethoxyphenylacetyl chloride (1.57 g, 6.4 mmol). Recrystallization from CHCl₃/hexanes gave 1.42 g (63%) of **22** as colorless crystals: mp 121−122 °C; ¹H NMR (CDCl₃) δ 2.74 (t, *J* = 6.0 Hz, 2H), 3.34 (q, *J* = 6.3 Hz, 2H), 3.43 (s, 2H), 3.79 (d, 9H), 5.22 (bs, 2H), 5.78 (t, *J* = 5.6 Hz, 1H), 6.39 (s, 2H), 6.59 (s, 1H); ¹³C NMR (CDCl₃) δ 26.8, 40.4, 44.0, 56.1, 60.8, 106.4, 124.4, 130.3, 135.8, 137.1, 153.5, 167.3, 170.9; IR (KBr) 3294, 3114, 2995, 2936, 1654, 1636, 1588 cm⁻¹. Anal. (C₁₆H₂₁N₃O₄S) C, H, N.

N-2-[(2-Amino-5-thiazolyl)ethyl]-3,4,5-trimethoxyphenethylamine Dihydrochloride (25). To a suspension of 22 (176 mg, 0.5 mmol) in dry THF (0.5 mL) was added dropwise slowly BH₃·THF (1.0 M in THF, 3.5 mL). After the addition was complete, the reaction mixture was stirred at room temperature for 30 min and then was heated at reflux for 1 h. The reaction mixture was cooled to room temperature and treated cautiously with 10% HCl aqueous solution (3 mL), and the solution was heated at reflux for 30 min. After removal of THF, H₂O (10 mL) was added to the residue. The acidic solution was basified with 10% NaOH aqueous solution at 0 °C. The product was extracted with CHCl₃ (20, 20, 10 mL); the combined organic was washed with brine (20 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation, a viscous oil was obtained, and it was dissolved in CHCl₃ (8 mL) and treated with HCl (1.0 M in dry $\mathrm{Et}_2\mathrm{O}\mathrm{)}.$ The whole mixture was evaporated to dryness, and the resulting white solid was crystallized in MeOH/Et₂O to give 109 mg (53%) of **25** as white crystals: mp 235 °C dec; ¹H NMR (CD₃OD) δ 2.98– 3.03 (m, 2H), 3.11-3.16 (m, 2H), 3.29-3.34 (m, 4H), 3.72 (s, 3H), 3.84 (s, 6H), 6.63 (s, 2H), 7.18 (s, 1H); ¹³C NMR (CD₃OD) δ 24.6, 33.5, 48.4, 50.3, 56.7, 61.1, 107.3, 121.7, 125.3, 133.7, 138.3, 154.9, 172.0; IR (KBr) 3427, 2947, 2767, 1630, 1590 cm⁻¹. Anal. (C₁₆H₂₃N₃O₃S·2HCl) C, H, N.

Pharmacological Studies. 1. Radioligand Binding Studies. Following digestion with trypsin, CHO cells expressing human β_1 -, β_2 -, or β_3 -AR were harvested into Ham's F-12 solution. Cells were pelleted and washed three times with Tris-EDTA buffer (pH 7.4; TRIZMA HCl, 50 mM; NaCl, 150 mM; disodium EDTA·2H₂O, 20 mM). Cells were then suspended in Tris-EDTA buffer after centrifugation. Competition binding assays were performed at 37 °C by incubating cells with varying concentrations of drugs in the presence of [125I]iodocyanopindolol ((1.5–5) \times 10⁴ cells/18–70 pM for human β_1 - or β_2 -AR, (3–5) × 10⁵ cells/200–500 pM for human β_3 -AR). Nonspecific binding was determined in the presence of (-)propranolol (1 μ M for human β_1 - or β_2 -AR, 100 μ M for human β_3 -AR). The incubations were terminated by rapid filtration over Whatman GF/B (for human β_1 - or β_2 -AR) or Whatman GF/C (for human β_3 -AR, presoaked in 0.1% poly(ethylenimine)) glass fiber filters using a Brandel model 12-R cell harvester. The filters were washed three times with the Tris-EDTA buffer (4 °C) and dried under cell harvester vacuum. The radioactivity in the filters was measured by gamma scintillation counting using a Beckman gamma counter model 8000. K_i values were calculated from the obtained IC_{50} values by the method of Cheng and Prusoff.38

2. cAMP Radioimmunoassay (cAMP-RIA Assay). CHO cells expressing either human β_1 -, β_2 -, or β_3 -AR subtypes were used as previously described.³⁹ These cells were grown to confluence in 60-mm dishes, washed with Hank's balanced salt solution, and then incubated with Hank's balanced salt solution (pH 7.4) containing 20 mM HEPES, 1 mM 3-isobutyl-1-methylxanthine (IBMX), and 1 mM L-ascorbic acid for 30 min at 37 °C. Varying concentrations $(10^{-11}-10^{-4} \text{ M})$ of the drugs were added with an additional 30 min of incubation. After removal of the Hank's buffer, the cAMP generated within the cells was extracted by the addition of trichloroacetic acid (6% w/v). cAMP content was determined as the amount of ¹²⁵I-labeled succinyl-cAMP tyrosine methyl ester/antibody precipitated, as described by Brooker et al.⁴⁰ The precipitated protein was dissolved in 0.1 N NaOH. Protein content was determined

by the method of Lowry et al., 41 using bovine serum albumin as the standard.

3. cAMP Response Element (CRE)–Luciferase (LUC) Reporter Gene (CRE–LUC) Assay. CHO cells stably expressing human β_1 -, β_2 -, or β_3 -AR subtypes were transfected with a 6 CRE–LUC plasmid (gift from Dr. A. Himmler, Vienna, Austria) using electroporation with a single 70-ms, 150-V pulse.⁴² The transfected CHO cells were seeded at a density of 40 000/well in 96-well microtiter plates (Culturplate, Packard) and allowed to grow for 20 h. After 20 h, the cells were treated with varying drug concentrations (10^{-11} – 10^{-4} M) for 4 h. Following drug exposures, the cells were lysed, and luciferase activity was measured using the LucLite assay kit (Packard). Changes in light production were measured by a Topcount luminometer (Packard).

Acknowledgment. We thank the National Institute of Health (USPHS NHLBI Grant HL-22533) and Molecular Design International (MDI) for their support of this research. We also thank Dr. Richard Fertel (Department of Pharmacology, The Ohio State University, Columbus, OH) for providing radiolabel and antibody for the cAMP radioimmunoassay.

References

- Lands, A. M.; Arnold, A.; McAuliff, J. P.; Luduena, F. P.; Brown, T. G., Jr. Differentiation of Receptor Systems Activated by Sympathomimetic Amines. *Nature* 1967, *214*, 597–598.
- (2) Arch, J. R. S.; Ainsworth, A. T.; Cawthorne, M. A.; Piercy, V.; Sennitt, M. V.; Thody, V. E.; Wilson, C.; Wilson, S. Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. *Nature* **1984**, *309*, 163–165.
- (3) Emorine, L. J.; Marullo, S.; Briend-Sutren, M.-M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A. D. Molecular Characterization of the Human β_3 -Adrenergic Receptor. *Science* **1989**, *245*, 1118–1121.
- (4) Nahamias, C.; Blin, N.; Elalouf, J.-M.; Mattei, M. G.; Strosberg, A. D.; Emorine, L. J. Molecular characterization of the mouse β₃-adrenergic receptor: relationship with the atypical receptor of adipocytes. *EMBO J.* **1991**, *10*, 3721–3727.
- (5) Granneman, J. G.; Lahners, K. N.; Chaudhry, A. Molecular Cloning and Expression of the Rat β₃- Adrenergic Receptor. *Mol. Pharmacol.* **1991**, *40*, 895–899.
- (6) Berkowitz, D. E.; Nardone, N. A.; Smiley, R. M.; Price, D. T.; Kreutter, D. K.; Fremeau, R. T.; Schwinn, D. A. Distribution of β₃-Adrenoceptor mRNA in Human Tissues. *Eur. J. Pharmacol.* **1995**, 289, 223–228.
- (7) Krief, S.; Lonnqvist, F.; Raimbault, S.; Baude, B.; Van Spronsen, A.; Arner, P.; Strosberg, A. D.; Ricquier, D.; Emorine, L. J. Tissue Distribution of β_3 -Adrenergic Receptor mRNA in Man. *J. Clin. Invest.* **1993**, *91*, 344–349.
- (8) Enocksson, S.; Shimizu, M.; Lonnqvist, F.; Nordenstrom, J.; Arner, P. Demonstration of an in Vivo Functional β₃-Adrenoceptor in Man. *J. Clin. Invest.* **1995**, *95*, 2239–2245.
 (9) Lönnqvist, F.; Krief, S.; Strosberg, A. D.; Nyberg, B.; Emorine,
- (9) Lönnqvist, F.; Krief, S.; Strosberg, A. D.; Nyberg, B.; Emorine, L. J.; Arner, P. Evidence for a Functional β₃-Adrenoceptor in Man. Br. J. Pharmacol. **1993**, 110, 929–936.
- (10) Guillaume, J.-L.; Petitjean, F.; Haasemann, M.; Bianchi, C.; Eshdat, Y.; Strosberg, A. D. Antibodies for the Immunochemistry of the Human β₃-Adrenergic Receptor. *Eur. J. Biochem.* 1994, 224, 761–770.
- (11) Arch, J. R. S.; Kaumann, A. J. β_3 And Atypical β -Adrenoceptors. *Med. Res. Rev.* **1993**, *13*, 663–729.
- (12) Howe, R. β_3 -Adrenergic Agonists. Drugs Future **1993**, 18, 529–549.
- (13) Walston, J.; Silver, K.; Bogadus, C.; Knowler, W. C.; Celi, F. S.; Austin, S.; Manning, B.; Strosberg, A. D.; Stern, M. P.; Raben, N.; Sorkin, J. D.; Roth, J.; Shuldiner, A. R. Time of Onset of Noninsulin-dependent Diabetes Mellitus and Genetic Variation in the β₃-Adrenergic Receptor Gene. N. Engl. J. Med. **1995**, 333, 343–347.
- (14) Clément, K.; Vaisse, C.; Manning, B. S. J.; Basdevant, A.; Guy-Grand, B.; Ruiz, J.; Silver, K. D.; Shuldiner, A. R.; Froguel, P.; Strosberg, A. D. Genetic Variation in the β_3 -Adrenergic Receptor and an Increased Capacity to Gain Weight in Patients with Morbid Obesity. *N. Engl. J. Med.* **1995**, *333*, 352–354.
- (15) Widén, E.; Lehto, M.; Kanninen, T.; Walston, J.; Shuldiner, A. R.; Groop, L. C. Association of a Polymorphism in the β₃-Adrenergic Receptor Gene with Features of the Insulin Resistance Syndrome in Finns. *N. Engl. J. Med.* **1995**, *333*, 348–351.
- (16) Claus, T. H.; Bloom, J. D. β₃-Selective Adrenergic Receptor Agonists. Annu. Rep. Med. Chem. 1995, 30, 189–198.

- (17) Strosberg, A. D. Structure and Function of the β₃-Adrenergic Receptor. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 421-450.
 (18) Yamato, E.; Hirakura, M.; Sugasawa, S. Synthesis of 6,7-
- (18) Yamato, E.; Hirakura, M.; Sugasawa, S. Synthesis of 6,7-Dihydroxy-1,2,3,4-Tetrahydroisoquinoline Derivatives. *Tetrahedron* **1966**, Suppl. 8, Part I, 129–134.
- (19) Iwasawa, Y.; Kiyomoto, A. Studies on Tetrahydroisoquinolines (THI) (J). Bronchodilator Activity and Structure–Activity Relationship. Jpn. J. Pharmacol. 1967, 17, 143–152.
- (1FII) (I). Bronchodilator Activity and Structure-Activity Relationship. *Jpn. J. Pharmacol.* **1967**, *17*, 143–152.
 (20) Kiyomoto, A.; Sato, M.; Nagao, T.; Nakajima, H. Studies on Tetrahydroisoquinolines (THI) (VII): Effect of Trimetoquinol on the Cardiovascular System. *Eur. J. Pharmacol.* **1969**, *5*, 303–312.
- (21) Shonk, R. F.; Miller, D. D.; Feller, D. R. Influence of Substituted Tetrahydroisoquinolines and catecholamines on Lipolysis, in vitro-II. *Biochem. Pharmacol.* **1971**, *20*, 3403–3412.
- (22) De Los Angeles, J. E.; Nikulin, V. I.; Shams, G.; Konkar, A. A.; Mehta, R.; Feller, D. R.; Miller, D. D. Iodinated Analogues of Trimetoquinol as Highly Potent and Selective β₂-Adrenoceptor Ligands. J. Med. Chem. **1996**, 39, 3701–3711.
- (23) Fraundorfer, P. F. Functional and Biochemical Characterization of Trimetoquinol (TMQ) Analogue Interactions with β-Adrenergic Receptor Subtypes. Ph.D. Thesis, The Ohio State University, Columbus, OH, 1993.
- (24) Wise, L. D.; Jaen, J. C. Design of Orally Active Dopamine Autoreceptor Agonists. In *Drug Design for Neuroscience*, Kozikowski, A. P., Ed.; Raven Press: New York, 1993; pp 119– 148.
- (25) Fraundorfer, P. F.; Fertel, R. H.; Miller, D. D.; Feller, D. R. Biochemical and Pharmacological Characterization of High-Affinity Trimetoquinol Analogues on Guinea Pig and Human beta Adrenergic Receptor Subtypes: Evidence for Partial Agonism. J. Pharmacol. Exp. Ther. **1994**, 270, 665–674.
- (26) Thomae, K. 4,5,6,7-Tetrahydrothiazolo[5,4-c]pyridines. Neth. Appl. 6 610 324, 1967; Chem. Abstr. 1968, 68, 49593p.
- (27) Thomae, K. Analgesic Tetrahydrothiazolo[5,4-c]pyridines. Fr. Addn. 94 123, 1969; *Chem. Abstr.* **1970**, *72*, 100685g.
- (28) Hantzsch, A.; Traumann, V. Amidothiazole aus Sulfoharnstoff und Halogenisirten Ketonen, respectively Aldehyden. *Berichte* 1888, *21*, 938–941.
- (29) Whaley, W. M.; Govindachari, T. R. The Preparation of 3,4-Dihydroisoquinolines and Related Compounds by the Bischler-Napieralski Reaction. Org. React. 1951, VI, 74-150.
- (30) Eriks, J. C.; Van der Goot, H.; Sterk, G. J.; Timmerman, H. Histamine H₂-Receptor Agonists. Synthesis, in Vitro Pharmacology, and Qualitative Sturctureactivity Relationships of Substituted 4- and 5-(2-Aminoethyl)thiazoles. J. Med. Chem. 1992, 35, 3239-3246.

- (31) Sprague, J. M.; Land, A. H.; Ziegler, C. Derivatives of 2-Amino-4-methylthiazole. J. Am. Chem. Soc. 1946, 68, 2155–2159.
- (32) Harrold, M. W.; Gerhardt, M. A.; Romstedt, K.; Feller, D. R.; Miller, D. D. Synthesis and Platelet Antiaggregatory Activity of Trimetoquinol Analogues as Endoperoxide/Thromboxane A₂ Antagonists. *Drug Des. Deliv.* **1987**, *1*, 193–207.
- (33) Kametani, T.; Fukumoto, K.; Fujihara, M. Studies on the Syntheses of Heterocyclic Compounds. Part CDLIV. Abnormal Dienone-Phenol Rearrangement of Procularine. *J. Chem. Soc.*, *Perkin Trans.* 1 1972, 394–396.
- (34) Rice, K. C.; Brossi, A. Expedient Synthesis of Racemic and Optically Active N-Norreticuline and N-Substituted and 6'-Bromo-N-norreticulines. J. Org. Chem. 1980, 45, 592-601.
- (35) Fodor, G.; Nagubandi, S. Correlation of the Von Braun, Ritter, Bischler–Napieralski, Beckmann and Schmidt Reactions via Nitrilium Salt Intermediates. *Tetrahedron* **1980**, *36*, 1279–1300.
- (36) Anden, N. E.; Nilsson, H.; Ros, E.; Thornstrom, U. Effects of B-HT 920 and B-HT 933 On Dopamine and Noradrenaline Autoreceptors in the Rat Brain. *Acta Pharmacol. Toxicol.* **1983**, *52*, 51–56.
- (37) Miller, D. D.; Osei-Gyimah, P.; Bardin, J.; Feller, D. R. Synthesis and Biological Evaluation of Fragmented Derivatives of Tertahydroisoquinolines. 2. Trimetoquinol Studies. *J. Med. Chem.* **1975**, *18*, 454–457.
 (38) Cheng, Y.; Prusoff, W. H. Relationship between the inhibition
- (38) Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (*K_i*) and the concentration of the inhibitor which causes 50% inhibition (I₅₀) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099–3108.
- (39) Fraundorfer, P. F.; Lezama, E. J.; Salazar-Bookaman, M. M.; Fertel, R. H.; Miller, D. D.; Feller, D. R. Isomeric-activity ratios of trimetoquinol enantiomers on β-adrenergic receptor subtypes: functional and biochemical studies. *Chirality* **1994**, *6*, 76– 85.
- (40) Brooker, G.; Harper, J. F.; Terasaki, W. L.; Moylan, R. D. Radioimmunoassay of cyclic AMP and cyclic GMP. In Advances in Cyclic Nucleotide Research; Brooker, G., Greengard, P., Robinson, A., Eds.; Raven Press: New York, 1979; pp 1–33.
- (41) Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275.
- (42) Vansal, S. S.; Feller, D. R. Development of a rapid and efficient cyclic AMP assay for evaluating β-adrenergic receptor ligands. *Naunyn-Schmiedeberg's Arch. Pharmacol. Suppl. 2* **1998**, *258*, R659.

JM990012Z